wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[3112], show that A25A+7I=O. Hence find A1

Open in App
Solution

A=[3112]

To Prove : A25A+7I=O
Now, A2=[3112][3112]

A2=[913+2321+4]
A2=[8553]

Consider , A25A+7I
=[8553]5[3112]+7[1001]

=[8553]+[155510]+[7007]

=[815+755+05+5+0310+7]
=[0000]
A25A+7I=O ....(1)

A1 :
Multiplying eqn (1) by A1
A2A15AA1+7IA1=O.A1
A5I+7A1=O (AA1=I,O.A=O)
7A1=5IA
=5[1001][3112]
=[5005][3112]
=[53010(1)52]
7A1=[2113]
A1=17[2113]



flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon