For the given matrix A, |A|=∣∣
∣∣31232−320−1∣∣
∣∣=3(−2)−1(3)+2(−4)=−17≠0∴A−1 exists.
Consider Aij be the cofactor of the element aij of matrix A.
A11=−2,A12=−3,A13=−4,A21=1,A22=−7,A23=2A31=−7,A32=15,A33=3∴adj.A=⎡⎢⎣−21−7−3−715−423⎤⎥⎦
So, A−1=adj.A|A|=1−17⎡⎢⎣−21−7−3−715−423⎤⎥⎦=117⎡⎢⎣−2−1737−154−2−3⎤⎥⎦
Now consider the equations: 3x+3y +2z=1, x+2y =4, 2x-3y -z =5
Let P=⎡⎢⎣3321202−3−1⎤⎥⎦=AT,B=⎡⎢⎣145⎤⎥⎦and, X=⎡⎢⎣xyz⎤⎥⎦
Since PX=B⇒X=P−1B=(A−1)TB [∵P−1=(AT)−1=(A−1)T
So, X=117⎡⎢⎣234−17−27−15−3⎤⎥⎦⎡⎢⎣145⎤⎥⎦⇒X=117⎡⎢⎣3417−68⎤⎥⎦⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣21−4⎤⎥⎦
By equality of matrices, we get: x=2, y=1, z=-4.