Here A=⎡⎢⎣3214−1273−3⎤⎥⎦⇒|A|=∣∣
∣∣3214−1273−3∣∣
∣∣=3(3−6)−(2)(−12−14)+1(12+7)=62≠0
Therefore A−1 exists.
Consider Cij be the cofactor of aij for matrix A.
C11=−3,C12=26,C13=19;C21=9,C22=−16,C23=5;C31=5,C32=−2,C33=−11.
So, adj. A=⎡⎢⎣−39526−16−2195−11⎤⎥⎦ ∴A−1=162⎡⎢⎣−39526−16−2195−11⎤⎥⎦...(i)
Now 3x + 4y + 7z = 14, 2x - y + 3z = 4, x + 2y - 3z = 0
Let P=⎡⎢⎣3472−1312−3⎤⎥⎦=AT,X=⎛⎜⎝xyz⎞⎟⎠,B=⎛⎜⎝1440⎞⎟⎠.
As PX=B i.e.,X=(AT)−1B=(A−1)TB
So by (i), X=162⎡⎢⎣−326199−1655−2−11⎤⎥⎦⎛⎜⎝1440⎞⎟⎠=162⎛⎜⎝626262⎞⎟⎠ ⇒⎛⎜⎝xyz⎞⎟⎠=⎛⎜⎝111⎞⎟⎠ ∴x=1,y=1,z=1.