If A=[3−24−2]andI=[1100], then find k so that A2=kA−2I.
Given A2=kA−2I⇒AA=kA−2I
⇒[3−24−2][3−24−2]=k[3−24−2]−2[1001]⇒[9−8−6+412−8−8+4]=[3k−2k4k−2k]−[2002]⇒[1−24−4]=[3k−2−2k4k−2k−2]
By definition of equality of matrix as the given matrices are equal, their corresponding elements are equal. Comparing the corresponding elements, we get
3k−2=1⇒k=1−2k=−2⇒k=14k=4⇒k=1
−4=−2k−2⇒k=1 Hence, k=1