(i) Given: A′=⎡⎢⎣34−1201⎤⎥⎦ and B=[−121123]
To verify: (A+B)′=A′+B′
A=(A′)′=⎡⎢⎣34−1201⎤⎥⎦′=[3−10421]
Solving L.H.S.
(A+B)′=([3−10421]+[−121123])′
⇒(A+B)′=([3+(−1)−1+20+14+12+21+3])′
⇒(A+B)′=([211544])′
⇒(A+B)′=⎡⎢⎣251414⎤⎥⎦
Solving R.H.S
A′+B′=⎡⎢⎣34−1201⎤⎥⎦+[−121123]′
⇒A′+B′=⎡⎢⎣34−1201⎤⎥⎦+⎡⎢⎣−112213⎤⎥⎦
⇒A′+B′=⎡⎢⎣3+(−1)4+1−1+22+20+11+3⎤⎥⎦
⇒A′+B′=⎡⎢⎣251414⎤⎥⎦
So, L.H.S.=R.H.S.
Hence verified.
(ii) Given: A′=⎡⎢⎣34−1201⎤⎥⎦ and B=[−121123]
To verify: (A−B)′=A′−B′
A=(A′)′=⎡⎢⎣34−1201⎤⎥⎦′=[3−10421]
Solving L.H.S.
(A−B)′=([3−10421]−[−121123])′
⇒(A−B)′=([3−(−1)−1−20−14−12−21−3])′
⇒(A−B)′=([4−3−130−2])′
⇒(A−B)′=⎡⎢⎣43−30−1−2⎤⎥⎦
Solving R.H.S
A′−B′=⎡⎢⎣34−1201⎤⎥⎦−[−121123]′
⇒A′−B′=⎡⎢⎣34−1201⎤⎥⎦−⎡⎢⎣−112213⎤⎥⎦
⇒A′−B′=⎡⎢⎣3−(−1)4−1−1−22−20−11−3⎤⎥⎦
⇒A′−B′=⎡⎢⎣43−30−1−2⎤⎥⎦
So, L.H.S.=R.H.S.
Hence verified.