If A=⎡⎢⎣abcbcacab⎤⎥⎦,abc=1,ATA=I, then find the value of a3+b3+c3.
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are C 4 D 2 Given A=⎡⎢⎣abcbcacab⎤⎥⎦,abc=1,ATA=I. ATA=I applying determinant on both sides |A|2=1⇒|A|=±1 ⇒|A|=∣∣
∣∣abcbcacab∣∣
∣∣=±1 ⇒(a+b+c)(ab+bc+ca−a2−b2−c2)=±1 ⇒a3+b3+c3−3abc=±1 ⇒a3+b3+c3=±1+3abc where abc=1 ∴a3+b3+c3=2 or 4 Hence, options B and C.