wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[abcd] and I=[1001], then show that A2(a+d)A=(bcad)I

Open in App
Solution

Given that:
A=[abcd], I=[1001]
To prove:
A2(a+d)A=(bcad)I
Solution:
A2=[abcd]×[abcd]=[a2+bcab+bdac+cdbc+d2]
(a+d)A=(a+d)[abcd]=[a2+adab+bdac+cdad+d2]
A2(a+d)A=[a2+bcab+bdac+cdbc+d2][a2+adab+bdac+cdad+d2]
=[a2+bca2adab+bdabbdac+cdaccdbc+d2add2]
=[bcad00bcad]
(bcad)I=(bcad)[1001]
=[bcad00bcad]
Hence, A2(a+d)A=(bcad)I

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon