If A=[abcd] (where bc≠0) satisfies the equation x2+k=0, then
k=|A|
A satisfies x2+k=0, hence, A2+kI=0A=[abcd],A2=[abcd][abcd]=[a2+bcb(a+d)c(a+d)d2+bc]A2+kI=0⇒[a2+bcb(a+d)c(a+d)d2+bc]+[k00k]=[0000]b(a+d)=0,c(a+d)=0Also given that bc≠0. Hence a+d=0 or d=−aSo, a2+bc=−ad+bc=d2+bc
Equating the first and fourth elements of the LHS to zero,
−ad+bc+k=0⇒k=ad−bc=|A|