If A = [cosαsinα−sinαcosα] and A−1 = A', then find the value of α.
We have, A = [cos αsin α−sin αcos α] and A′ = [cos α−sin αsin αcos α]
Also, A−1 = A'
⇒AA−1 = AA'
⇒I=[cos αsin α−sin αcos α][cos α−sin αsin αcos α]
⇒[1001]=[cos2α+sin2α00sin2α+cos2α]
By using equality of matrices, we get
cos2α+sin2α=1
which is true for all real values of α.