If A=[cosα−sinαsinαcosα] and A+AT=I, find the value of a in πa∈[0,π].
Open in App
Solution
[cosα−sinαsinαcosα] ⇒AT=[cosαsinα−sinαcosα] Now, A+AT=I ∴[cosα−sinαsinαcosα]+[cosαsinα−sinαcosα]=[1001] ⇒[2cosα002cosα]=[1001] Comparing the corresponding elements of the two matrices, we have 2cosα=1 or cosα=12=cosπ3