wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[cosαsinαsinαcosα], B=[cos2βsin2βsin2βcos2β], where 0<β<π2, then prove that BAB=A1. .

Open in App
Solution

We have A=[cosαsinαsinαcosα]A1=[cosαsinαsinαcosα].
Now, BAB
=[cos2βsin2βsin2βcos2β][cosαsinαsinαcosα][cos2βsin2βsin2βcos2β]

=[cos2βsin2βsin2βcos2β][cos(α+2β)sin(α+2β)sin(α+2β)cos(α+2β)]

=[cos(α+2β2β)sin(α+2β2β)sin(α+2β2β)cos(α+2β2β)]

=[cosαsinαsinαcosα]=A1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon