We have A = [cosαsinα−sinαcosα],
Now, AT=[cosα−sinαsinαcosα]
But given that A+AT=√2I2
⇒[cosα−sinα−sinαcosα]+[cosα−sinαsinαcosα]=√2[1001]
⇒[2cos α002cos α]=[√200√2]
By equality of matrices, we have
2cos α=√2⇒cos α=√22
⇒cosα=1√2⇒cosα=cosπ4
∴ α=π4 [ as 0<α<π2]