The correct option is
A 255A−254I.
A=(1012)⇒A2=(1012)(1012)=(1034)Now,
3A−2I=(1012)−2(1001)
=(3−203−06−2)
=(1034)
Hence, A2=3A−2I
Now,
A4=(A2)2=(3A−2I)2
=9A2−12AI+4I2
=9A2−12A+4I
=9(3A−2I)−12A+4I
=15A−14I
∴A8=(A4)2=(15A−14I)2
=225A2−420AI+196I2
=225(3A−2I)−420A+196I
=255A−254I