Taking R.H.S. 27|A|=(27)∣∣ ∣∣⎡⎢⎣101012004⎤⎥⎦∣∣ ∣∣ =(27)(1∣∣∣1204∣∣∣−0∣∣∣0204∣∣∣+1∣∣∣0100∣∣∣) =(27)(1(1(4)−0(2))−0(0(4)−0(2))+1(0−0(1))) =(27)(1(4−0)−0(0)+1(0)) =27(4) =108 ∴L.H.S.=R.H.S. Hence Proved
If A=⎡⎢⎣101012004⎤⎥⎦, then show that |3A|=27|A|.