wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=∣ ∣101012004∣ ∣, then show that |3A|=27|A|

Open in App
Solution

Given A=∣ ∣101012004∣ ∣
To show: |3A|=27|A|
Taking L.H.S.
|3A|=∣ ∣(3)101012004∣ ∣=3030360012
=336012006012+30300
=3(3(12)0(6))0(0(12)0(6))+3(0(0)0(3))
=3(360)0(0)+3(0)
=3(36)+0+0=108
L.H.S=|3A|=108

Taking R.H.S.
27|A|=(27)∣ ∣101012004∣ ∣
=(27)(1120400204+10100)
=(27)(1(1(4)0(2))0(0(4)0(2))+1(00(1)))
=(27)(1(40)0(0)+1(0))
=27(4)
=108
L.H.S.=R.H.S.
Hence Proved


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon