The correct option is A α≠β+nπ, n being any integer
A=∣∣
∣∣1+cosα1+sinα11+cosβ1+sinβ1111∣∣
∣∣≠0
R1→R1−R2 ,R2→R2−R3
A=∣∣
∣∣cosα−cosβsinα−sinβ0cosβsinβ0111∣∣
∣∣≠0
(cosα−cosβ)sinβ−cosβ(sinα−sinβ)≠0
go by option
if we put α=β,α=β+π2,α=β−π2
it becomes 0 α≠β+nπ is only soln.