If A=∣∣ ∣∣2λ−3025113∣∣ ∣∣, then A−1 exists, if
(a) λ=2
(b) λ≠2
(c) λ≠−2
(d) None of these
(d) We have,
A=∣∣
∣∣2λ−3025113∣∣
∣∣
Expanding along R1,
|A|=2(6−5)−λ(−5)−3(−2)=2+5λ+6
We know that, A−1 exists, if A is non-singular matrix i.e., |A|≠0
∴2+5λ+6≠0⇒5λ≠−8∴λ≠−85
So, A−1 exists if and only if λ≠−85