wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=(1423) and B=(1632), then prove that (A+B)2A2+2AB+B2

Open in App
Solution

A=[1423],B=[1632]
To prove : (A+B)2A2+2AB+B2
L.H.S (A+B)2=(A+B)(A+B)
A+B=[1423][1632]
=[0211]
(A+B)(A+B)=[0211][0211]
=[0+20+20+12+1]
(A+B)2=[2213]
Now, R.H.S A2+2AB+B2
A2=A.A=[1423][1423]
=[1+8412268+9]
=[916817]
2AB=2[1423][1632]
=2[1126+82+9126]=2[13141118]
=[26282236]
B2=B.B=[1632][1632]=[1+186123618+4]
B2=[1918922]
A2+2AB+B2=[916817]+[26282236]+[1918922]
=[926+1916+28188+2291736+22]
=[2653]
Hence, proved (A+B)2A2+2AB+B2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative Application
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon