Consider A2=A×A
=(abcd)(abcd)=(a2+bcab+bdac+cdbc+d2) ............. (1)
Now, (a+d)A=(a+d)(abcd)
=(a2+adab+bdac+cdad+d2) ............. (2)
From (1) and (2) we get,
A2−(a+d)A=(a2+bcab+bdac+cdbc+d2)−(a2+adab+bdac+cdad+d2)
=(bc−ad00bc−ad)=(bc−ad)(1001)
Thus, A2−(a+d)A=(bc−ad)I2.