If A+C=2B, then cosC-cosAsinA-sinC is equal to
cotB
cot2B
tan2B
tanB
Explanation for the correct option:
Step 1. Find the value of cosC-cosAsinA-sinC:
Given,
A+C=2B
Now,
cosC-cosAsinA-sinC=-(cosA–cosC)sinA–sinC
=--2sin(A+C)2sin(A–C)22cos(A+C)2sin(A–C)2
Step 2. Use the identities:cosθ-cosϕ=-2sin(θ+ϕ)2sin(θ-ϕ)2,sinθ-sinϕ=2cos(θ+ϕ)2sin(θ-ϕ)2
cosC-cosAsinA-sinC=sin(A+C)2cos(A+C)2=sin2B2cos2B2=sinBcosB=tanB
∴cosC-cosAsinA-sinC=tanB
Hence, Option ‘D’ is Correct.