If A∩B′=ϕ then prove that A=A∩B and hence show that A⊆B.
Let A∩B′=ϕ be given. Then,
A=(A∩U), where U is the universal set
=A∩(B∪B′)[∵ B∪B′=∪]=(A∩B)∪(A∩B′)=(A∩B)∪ϕ[∵A∩B′=ϕ]=(A∩B)
Hence, A=(A∩B).
Further, let A=A∩B and let xϵA. Then,
xϵA⇒xϵA∩B[∵A=A∩B]⇒xϵA and xϵB⇒xϵB (surely).
∴ A⊆B.