If a chord joining two points A,B whose eccentric angles are α,β cuts the major axis of the ellipse x225+y216=1 at a distance 1 from the centre, then ∣∣3tanα2tanβ2∣∣=
Open in App
Solution
Equation of the chord AB is x5cosα+β2+y4sinα+β2=cosα−β2 It also passes through (±1,0) ∴±15=cosα−β2cosα+β2⇒±⎡⎢⎣cosα−β2−cosα+β2cosα−β2+cosα+β2⎤⎥⎦=1−51+5⇒±⎡⎢⎣2sinα2sinβ22cosα2cosβ2⎤⎥⎦=−23⇒⎡⎢⎣2sinα2sinβ22cosα2cosβ2⎤⎥⎦=±23∣∣3tanα2tanβ2∣∣=2