The correct options are
A √2
B −√2
Let P(at2,2at) be the point where normal is drawn and Q be the other point where normal intersects the curve.
∴ Q will have t1=−t−2t…(i)
∴ Slope of OP=2at−0at2−0=2t
Similarly, slope of OQ=2t1
Right angle subtended at vertex
2t×2t1=−1⇒tt1=−4…(ii)
From equation (i) and (ii), we get
−4t=−t−2t⇒2t=t⇒t=±√2
∴P≡(2a,2√2a) or P≡(2a,−2√2a) and
Q≡(8a,−4√2a) or
Q≡(8a,4√2a)
Now slope of normal when t=√2 will be =−4√2a−2√2a8a−2a
=−√2
And, slope of normal when t=−√2 will be =4√2a−(−2√2a)8a−2a
=√2