If a circle and the rectangular hyperbola x y = c2 meet in the four points t1 .t2 .t3 & t4 then t1 .t2 .t3 t4 is equal to______
Let the equation of the circle be ax2 + by2 + 2gx + 2fy + c = 0 - - - - - - - (1)
Equation of the rectangular hyperbola x y = c2
solving equation (1) & (2)
y = c2x
x2 + c4x2 + 2gx + 2fc2x + c = 0
x4 + 2gx3 + cx2 + 2fc2x + c4 = 0
then product of the roots of the above equation.
x1 .x2 .x3. x4 = c41
ct1 .ct2 .ct3 .ct4 = c4
c4 .t1 .t2 .t3 t4= c4
t1 .t2 .t3 t4= 1