If a circle S(x,y)=0 touches at the point (2,3) of the line x+y=5 and S(1,2)=0, then radius of such circle
Let (x−a)2+(y−b)2=r2 be the equation of circle with center (a,b) and radius r
Given S(1,2)=0
⟹(1−a)2+(2−b)2–r2=0−eq.1
It also passes through (2,3)
⟹(2−a)2+(3−b)2–r2=0−eq.2
Eq.1 = eq.2
⟹(1−a)2+(2−b)2=(2−a)2+(3−b)2
⟹(2a−5)=(5–2b)
⟹a+b=4
And given x+y–5=0 is a tangent
⟹ radius = perpendicular distance from center to tangent
r=|a+b−5|√1+1
r=|4−5|√2=1√2