If a complex number z lies in the interior or on the boundary of a circle of radius 3 and centre at (−4,0), then prove that the greatest and least values of |z+1| are 6,0.
Open in App
Solution
|z+1|=|z+4−3|=|(z+4)+(−3)|≤|z+4|+|−3|=|z+4|+3≤3+3=6 \ [∵|z+4|≤3] Hence the greatest value of |z+1| is 6. |z+1|=|z+4−3|≥|z+4|−|3|=0 Hence the least value is 0.