wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a cos 2θ + b sin 2θ = c has α and β as its roots, then prove that tanα + tan β = 2b/a+c
.

Open in App
Solution

a cos 2θ+ b sin 2θ=ca1-tan2θ1+tan2θ+b2 tan θ1+tan2θ=c Since sin 2x=2 tan x1+tan2x and cos 2x=1-tan2x1+tan2xa-a tan2θ +2b tan θ=c+c tan2θ c+a tan2θ-2b tan θ+c-a=0tan θ=2b±4b2-4c+ac-a2c+a=2b±4b2-4c2+4a22c+a=2b±2b2-c2+a22c+a=b±b2-c2+a2c+aSo , α=tan-1b+b2-c2+a2c+a and β=tan-1b-b2-c2+a2c+atan α +tan β=tantan-1b+b2-c2+a2c+a+tantan-1b-b2-c2+a2c+a=b+b2-c2+a2c+a+b-b2-c2+a2c+a=b+b2-c2+a2+b-b2-c2+a2c+a=2bc+a=RHSHence Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon