If a cos 2θ+b sin 2θ=c has α and β as its roots, that prove that
(i) tan α+tan β=2ba+c
(ii) tan α tan β=c−ac+a
(iii) tan (α+β)=ba
cos 2θ=1−tan2 θ1+tan2 θsin 2θ=2 tan θ1+tan2 θ
substitute these values in the given equation, it reduces to a(1−tan2θ)+b(2 tanθ)=c(1+tan2θ)
(c+a) tan2 θ+2b tan θ+c−a=0
As α and β are roots
sum of the roots, tan α+tan β=2bc+a
Product of roots, tan α tan β=c−ac+a
tan(α+β)=tan α+tan β1−tan α tan β=2bc+a−c+a=ba