If a cos3 α+3a cos α sin2 α=m and a sin3 α +3a cos2 α sin α=n, then (m+n)23+(m−n)23 is equal to
From the given relations, we get m+n=a cos3α+3a cos α sin2α+3a cos2 α sin α+a sin3α =a(cosα+sinα)3
Similarly m−n=a(cos α−sin α)3∴ (m+n)23+(m−n)23=a23[(cos α+sin α)2+(cos α−sin α)2]