wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a cos θ + b sin θ = m and a sin θ − b cos θ = n, prove that (m2 + n2) = (a2 + b2).

Open in App
Solution

We have m2+n2=[acosθ+bsinθ2+asinθ-bcosθ2] = (a2cos2θ+b2sin2θ+2abcosθsinθ)+(a2sin2θ+b2cos2θ2absinθcosθ) = a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ =(a2cos2θ+a2sin2θ)+(b2cos2θ+b2sin2θ) =a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ) =a2+b2 [sin2+cos2=1]Hence, m2+n2=a2+b2

flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon