The correct option is C x2+x+2=0
Given, a=cos2π7+isin2π7
∴a7=cos2π+isin2π
[∵eiθ=cosθ+isinθ]
=1
Also, α=a+a2+a4,β=a3+a5+a6
then the sum of roots,
S=α+β=a+a2+a3+a4+a5+a6
⇒S=a(1−a6)1−a=a−a71−a
=a−11−a=−1[∵a7=1]
Product of the roots,
P=αβ=(a+a2+a4)(a3+a5+a6)
=a4+a5+1+a6+1+a2+1+a+a3[∵a7=1]
=3+(a+a2+a3+a4+a5+a6)=3−1=2
Hence, the required quadratic equation is
x2+x+2=0.