wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=cosθi sinθi sinθ cosθ, then prove by principle of mathematical induction that

An= cos nθ i sinθi sin nθcos nθ for all n ∈ N.

Open in App
Solution


We shall prove the result by the principle of mathematical induction on n.

Step 1: If n = 1, by definition of integral power of a matrix, we have

A1=cos 1θi sin1θi sin 1θcos 1θ=cosθi sinθi sinθcosθ=A

Thus, the result is true for n=1.

Step 2: Let the result be true for n = m. Then,

Am=cosmθi sinmθi sinmθcosmθ

Now we shall show that the result is true for n=m+1.
Here,
Am+1=cos m+1θi sinm+1θi sin m+1θcos m+1θ ...(1)

By definition of integral power of matrix, we have
Am+1=AmAAm+1=cos mθi sinmθi sin mθcos mθcosθi sinθi sinθcosθ From eq. 1Am+1=cos mθ.cosθ+i sinmθ.i sinθcos mθ.i sinθ+i sinmθ.cosθi sin mθ.cosθ+cos mθ.i sinθi sin mθ.i sinθ+cos mθ.cosθAm+1=cos mθ.cosθ-sinmθ.sinθicos mθ.sinθ+sinmθ.cosθi sin mθ.cosθ+cos mθ sinθ-sin mθ.sinθ+cos mθ.cosθAm+1=cos mθ.cosθ-sinmθ.sinθicos mθ.sinθ+sinmθ.cosθi sin mθ.cosθ+cos mθ sinθcos mθ.cosθ-sin mθ.sinθAm+1=cosmθ+θi sinmθ+θi sinmθ+θcosmθ+θAm+1=cosm+1θi sinm+1θi sinm+1θcosm+1θ

This shows that when the result is true for n = m, it is true for n=m+1.
Hence, by the principle of mathematical induction, the result is valid for all nN.

Disclaimer: n is missing before θ in a12 in An.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon