If \(a=cos\left(\frac{2\pi}{7} \right )+i~sin\left(\frac{2\pi}{7} \right )\)then the quadratic equation whose roots are \(\alpha=a+a^2+a^4~and~\beta=a^3+a^5+a^6\)is
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D a=cos(2π7)+isin(2π7)a7=[cos(2π7)+isin(2π7)]=cos2π+isin2π=1......(i) S=α+β=(a+a2+a4)+(a3+a5+a6)S=a+a2+a3+a4+a5+a6=a(1−a6)1−6S=a−a71−a=a−11−a=−1...........(ii)P=αβ=(a+a2+a4)(a3+a5+6)=a4+a6+a7+a5+a7+a8+a7+a9+a10=a4+a6+1+a5+1+a+1+a2+a3[Fromeqn(i)]=3+(a+a2+a3+a4+a5+a6)=3+S=3−1=2[From(ii)] Required equation is, x2−Sx+P=0 ⇒x2+x+2=0.