wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=cos α+sin α2sin α-2sin αcos α-sin α, prove that

An=cos n α+sin n α2sin n α-2sin n αcos n α-sin n α for all n ∈ N.

Open in App
Solution

We shall prove the result by the principle of mathematical induction on n.

Step 1: If n = 1, by definition of integral power of a matrix, we have

A1=cos 1α+sin 1α2sin 1α-2 sin 1αcos 1α-sin 1α=cos α+sin α 2sin α-2sin αcos α-sin α=A

So, the result is true for n = 1.

Step 2: Let the result be true for n = m. Then,
Am=cos mα+sin mα 2sin mα-2sin mαcos mα-sin mα ...(1)

Now we shall show that the result is true for n=m+1.
Here,
Am+1=cos m+1α+sin m+1α 2sin m+1α-2sin m+1αcos m+1α-sin m+1α

By definition of integral power of matrix, we have
Am+1=Am.AAm+1=cos mα+sin mα 2sin mα-2sin mαcos mα-sin mαcos α+sin α 2sin α-2sin αcos α-sin α From eq. 1Am+1=cos mα+sin mαcos α+sin α -2sin mα2sin αcos mα+sin mα 2sin α+2sin mαcos α-sin α-2sin mαcos α+sin α-cos mα-sin mα2sin α-2sin mα2sin α+cos mα-sin mαcos α-sin αAm+1=cos mα cosα+sin mα cosα+cos mα sinα+sin mα sinα-2sin mα sinα2sin α cos mα+2sin α sin mα+2sin mα cosα-2sin ma sinα-2sin ma cosα-2sin ma sinα-2sin α cos mα+2sin α sin mα-2sin α sin mα+cos mα cosα-sin mα cosα-cos mα sinα+sin mα sinαAm+1=cosmα-α+sinmα+α-cosmα-α+cosmα+α2sinmα+α-2sinmα+αcosmα+α-sinmα+αAm+1=cosmα+α+sinmα+α2sinmα+a-2sinmα+αcosmα+α-sinmα+αAm+1=cosm+1α+sinm+1α2sinm+1α-2sinm+1αcosm+1α-sinm+1α

This show that when the result is true for n = m, it is also true for n = m +1.

Hence, by the principle of mathematical induction, the result is valid for all nN.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon