If acosθ+bsinθ=4 and asinθ−bcosθ=3, then a2+b2=
25
acosθ+bsinθ=4 and asinθ−bcosθ=3
⇒(acosθ+bsinθ)2=42and(asinθ−bcosθ)2=32
Adding,
a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ−2absinθcosθ=16+9
a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ) = 25
⇒a2+b2=25