If acosθ+bsinθ=4 and asinθ−bcosθ=3 then, find the value of a2+b2.
Given:
acosθ+bsinθ=4 and asinθ−bcosθ=3
Squaring on both the sides we get,
(acosθ+bsinθ)2=42⇒a2cos2θ+b2sin2θ+2absinθcosθ=16....(i)
(asinθ−bcosθ)2=32⇒a2sin2θ+b2cos2θ−2absinθcosθ=9.....(ii)
Adding, (i) and (ii), we get
a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ−2absinθcosθ=16+9
On simplifying the above terms, we get,
a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ)=25
Since sin2 θ+cos2θ=1 we get,
a2(1)+b2(1) = 25
⇒a2+b2=25