wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If acosθ+bsinθ=c and
acos2θ+2asinθcosθ+bsin2θ=c
where a,b,c, are all unequal quantities, then eliminate θ

Open in App
Solution

acosθ+bsinθ=c ...(1)
acos2θ+bsin2θ+2asinθcosθ=c
a(1+cos2θ)2+b(1cos2θ)2+asin2θ=c
a+acos2θ+bbcos2θ+2asin2θ=2c
(ab)cos2θ+2asin2θ=2c(a+b) ...(2)
Squaring (1) on both sides
a2cos2θ+b2sin2θ+absin2θ=c2
a2(1+cos2θ)2+b2(1cos2θ)2+absin2θ=c2
(a2b2)cos2θ+2absin2θ=2c2(a2+b2) ....(3)
From equation (2) sin2θ=[2c(a+b)][(ab)cos2θ]2a
putting in (3)
(a2b2)cos2θ+b[(2c(a+b))((ab)cos2θ)]=2c2a2b2
(a2b2)cos2θ+b[2cab(ab)cos2θ]=2c2a2b2
(a2b2)cos2θ+2bcabb2b(ab)cos2θ=2c2a2b2
a2cos2θb2cos2θ+2bcababcos2θ+b2cos2θ=2c2a2
(a2ab)cos2θ=2c2a2+ab2bc
cos2θ=2c2a2+ab2bca2ab=2c22bc(a2ab)a2ab
cos2θ=2c(cb)a(ab)1
θ=12cos1(2c(cb)a(ab)1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon