1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative from First Principle
If acosθ- b...
Question
If
a
cos
θ
−
b
sin
θ
=
c
, Find
(
a
sin
θ
+
b
cos
θ
)
−
√
(
a
2
+
b
2
−
c
2
)
Open in App
Solution
We have,
a
cos
θ
−
b
sin
θ
=
c
Squaring both sides
⇒
a
2
cos
2
θ
+
b
2
sin
2
θ
−
2
a
b
sin
θ
cos
θ
=
c
2
⇒
a
2
(
1
−
sin
2
θ
)
+
b
2
(
1
−
cos
2
θ
)
−
2
a
b
sin
θ
cos
θ
=
c
2
⇒
a
2
−
a
2
sin
2
θ
+
b
2
−
b
2
cos
2
θ
−
2
a
b
sin
θ
cos
θ
=
c
2
⇒
a
2
+
b
2
−
c
2
=
a
2
sin
2
θ
+
b
2
cos
2
θ
+
2
a
b
cos
θ
sin
θ
⇒
a
2
+
b
2
−
c
2
=
(
a
sin
θ
+
b
cos
θ
)
2
⇒
(
a
sin
θ
+
b
cos
θ
)
=
±
√
a
2
+
b
2
−
c
2
→
(
1
)
so
(
a
sin
θ
+
b
cos
θ
)
−
√
a
2
+
b
2
−
c
2
=
0
Suggest Corrections
2
Similar questions
Q.
If
a
cos
θ
−
b
sin
θ
=
c
, prove that
a
sin
θ
+
b
cos
θ
=
±
√
a
2
+
b
2
−
c
2
Q.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(a)
±
a
2
+
b
2
+
c
2
(b)
±
a
2
+
b
2
-
c
2
(c)
±
c
2
-
a
2
-
b
2
(d) None of these