wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If acosθbsinθ=c, prove that asinθ+bcosθ=±a2+b2c2

Open in App
Solution

We have, acosθbsinθ=c.
On squaring both sides, we get

(asinθbcosθ)2=c2

(asinθ)2+(bcosθ)22(asinθ)×(bcosθ)=c2

[Using the identity, (ab)2=a2+b22ab]

a2sin2θ+b2cos2θ2(absinθcosθ)=c2

a2sin2θ+b2cos2θ=c2+2(absinθcosθ)

a2(1cos2θ)+b2(1sin2θ)=c2+2(absinθcosθ)

[Using the identity, sin2θ+cos2θ=1,sin2θ=1cos2θ and cos2θ=1sin2θ]


(a2a2cos2θ)+(b2b2sin2θ)=c2+2(absinθcosθ)

a2+b2a2cos2θb2sin2θ=c2+2(absinθcosθ)

a2+b2c2=a2cos2θ+b2sin2θ+2(absinθcosθ)

a2+b2c2=(acosθ)2+(bsinθ)2+2(absinθcosθ)

a2+b2c2=(acosθ)2+(bsinθ)2+2(acosθ×bsinθ)

a2+b2c2=(acosθ+bsinθ)2

[Using the identity, a2+b2+2ab=(a+b)2 ]

(acosθ+bsinθ)=±a2+b2c2



flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon