If acosθ−bsinθ=c, prove that asinθ+bcosθ=±√a2+b2−c2
⇒(asinθ−bcosθ)2=c2
⇒(asinθ)2+(bcosθ)2−2(asinθ)×(bcosθ)=c2
[Using the identity, (a−b)2=a2+b2−2ab]
⇒a2sin2θ+b2cos2θ−2(absinθcosθ)=c2
⇒a2sin2θ+b2cos2θ=c2+2(absinθcosθ)
⇒(a2−a2cos2θ)+(b2−b2sin2θ)=c2+2(absinθcosθ)
⇒a2+b2−c2=(acosθ)2+(bsinθ)2+2(absinθcosθ)
⇒a2+b2−c2=(acosθ)2+(bsinθ)2+2(acosθ×bsinθ)
[Using the identity, a2+b2+2ab=(a+b)2 ]
∴(acosθ+bsinθ)=±√a2+b2−c2