wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If acosθbsinθ=x and asinθ+bcosθ=y, prove that a2+b2=x2+y2.

Open in App
Solution

acosθbsinθ=x
Squaring on both sides
(acosθbsinθ)2=x2
a2cos2θ2abcosθsinθ+b2sin2θ=x2......................(1)
asinθ+bcosθ=y
(asinθ+bcosθ)2=y2
a2sin2θ+2absinθcosθ+b2cos2θ=y2.....................(2)
Adding (1) and(2)
a2cos2θ2absinθcosθ+b2sin2θ+a2sin2θ+2absinθcosθ+b2cos2θ=x2+y2
a2(sin2θ+cos2θ)+b2(sin2θ+cos2θ)=x2+y2
sin2θ+cos2θ=1
a2+b2=x2+y2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon