wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If acosθbsinθ=x and asinθ+bcosθ=y then find a2+b2x2+y2.

Open in App
Solution

x2=a2cos2θ+b2sin2θ2abcosθsinθy2=a2sin2θ+b2cos2θ+2abcosθsinθ

Now, x2+y2=a2cos2θ+b2sin2θ2abcosθ+a2sin2θ+b2cos2θ+2abcosθsinθ=a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ)=a2+b2

Hence, a2+b2x2+y2=a2+b2a2+b2=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon