If a=cosθ+isinθ,b=cos2θ−isin2θ,c=cos3θ+isin3θ, where i=√−1 and if ∣∣
∣∣abcbcacab∣∣
∣∣=0, then
A
θ=2kπ,kϵZ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
θ=(2k+1)π,kϵZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
θ=(4k+1)π,kϵZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aθ=2kπ,kϵZ Δ=∣∣
∣∣abcbcacab∣∣
∣∣ =−(a3+b3+c3−3abc) =−(a+b+c)(a2+b2+c2−ab−bc−ca) =−12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0 ⇒a+b+c=0 or a=b=c
If a+b+c=0, we have cosθ+cos2θ+cos3θ=0 and sinθ−sin2θ+sin3θ=0 ⇒cos2θ(2cosθ+1)=0 and sin2θ(2cosθ−1)=0⋯(1)
which is not possible as cos2θ=0 gives sin2θ≠0,cosθ≠1/2
Therefore, Eq.(1) does not hold simultaneously. ∴a+b+c≠0 ∴a=b=c
or eiθ=e−2iθ=e3iθ
which is satisfied only by eiθ=1, i.e.,cosθ=1,sinθ=0 so θ=2kπ,kϵZ.