The correct option is D f(−1)=3
As, f(x) has relative extrema at x=−1,13
Let f′(x)=a(x+1)(x−13)
Integrating both sides, we get
⇒f(x)=a(x33+x23−x3)+C
∵f(−2)=0;C=2a3
⇒f(x)=a3(x3+x2−x+2)
Again,
1∫−1f(x)dx=143⇒2a3(0+x33−0+2x)10=143
[∵x3,−x is odd and x2,2 is even]
⇒a=3
So, f(x)=x3+x2−x+2
∴f(1)=3,f(2)=12,f(0)=2 and f(−1)=3.