If (A∪B)=(A∩B) then prove that A=B
Let (A∪B)=(A∩B) be given.
Let x be an arbitrary element of A. Then,
xϵA and xϵB⇒xϵA∪B[∵A⊆A∪B] ⇒xϵA∩B[∵ A∪B=A∩B]⇒xϵA and xϵB⇒xϵB (surely).∴ A⊆B …(i)
Again, let yϵB. Then,
yϵB⇒yϵA∪B[∵B⊆A∪B]⇒yϵA∩B∵ A∪B=A∩B⇒yϵA and ⇒yϵByϵA(surely).∴B⊆A. …(ii)
Thus from (i) and (ii), we get A= B