wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a curve is represented parametrically by the equations
x=sin(t+7π12)+sin(tπ12)+sin(t+3π12)
y=cos(t+7π12)+cos(tπ12)+cos(t+3π12),
then the value of ddt(xyyx) at t=π8 is

Open in App
Solution

x=sin(t+7π12)+sin(tπ12)+sin(t+3π12)
=2sin(t+π4)cos(π3)+sin(t+π4)=sin(t+π4)(2cosπ3+1)=2sin(t+π4)

y=cos(t+7π12)+cos(tπ12)+cos(t+3π12)=2cos(t+π4)cos(π3)+cos(t+π4)=cos(t+π4)(2cosπ3+1)=2cos(t+π4)

xy=tan(t+π4)=1+tant1tant
and yx=1tant1+tant

(xyyx)=(1+tant1tant)(1tant1+tant)=(1+tant)2(1tant)21tan2t=4tant1tan2t=2tan2t

Hence, ddt(xyyx)=ddt(2tan2t)
=4sec22tt=π/8=4sec2π4=8

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Representation-Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon