x=sin(t+7π12)+sin(t−π12)+sin(t+3π12)
=2sin(t+π4)cos(π3)+sin(t+π4)=sin(t+π4)(2cosπ3+1)=2sin(t+π4)
y=cos(t+7π12)+cos(t−π12)+cos(t+3π12)=2cos(t+π4)cos(π3)+cos(t+π4)=cos(t+π4)(2cosπ3+1)=2cos(t+π4)
xy=tan(t+π4)=1+tant1−tant
and yx=1−tant1+tant
∴(xy−yx)=(1+tant1−tant)−(1−tant1+tant)=(1+tant)2−(1−tant)21−tan2t=4tant1−tan2t=2tan2t
Hence, ddt(xy−yx)=ddt(2tan2t)
=4sec22t∣∣t=π/8=4sec2π4=8