Given :
x=sin(t+7π12)+sin(t−π12)+sin(t+3π12)⇒x=2sin(t+π4)cos(π3)+sin(t+π4)⇒x=2sin(t+π4)
Similarly
y=cos(t+7π12)+cos(t−π12)+cos(t+3π12)⇒y=2cos(t+π4)cos(π3)+cos(t+π4)⇒y=2cos(t+π4)
Now,
xy=tan(t+π4)yx=cot(t+π4)
Therefore,
ddt(xy−yx)=sec2(t+π4)+cosec2(t+π4)⇒ddt(xy−yx)=1cos2(t+π4)sin2(t+π4)⇒ddt(xy−yx)=4sin2(2t+π2)
Putting t=π8, we get
⇒ddt(xy−yx)=8