If a curve satisfies ydx–xdy+3x2 y2ex3 dx = 0 and y(0) = 1 then y(1)=
1 – e
e – 1
d(xy)+d(ex3)=0
⇒ xy+ex3=c
x = 0, y=1
⇒c=1
x = 1
⇒1y+e=1
y = 11−c