Given, A=11cot−1(11)+12cot−1(12)+13cot−1(13) and B=1cot−11+2cot−12+3cot−13
We know that cot−11x=tan−1x ∀ x>0
⇒A=tan−11+12tan−12+13tan−13
Also, tan−11=cot−11=π4
∴|B−A|=|cot−11+2cot−12+3cot−13−(tan−11+12tan−12+13tan−13)|
∴|B−A|=|2cot−12+3cot−13−12tan−12−13tan−13|
Consider tan−12=x
∴tanx=2
∴sinx=2√1−sin2x
∴5sin2x=4
∴sinx=2√5⟹x=7π20
Also, tan−1x+cot−1x=π2
∴|B−A|=|2(π2−7π20)+3cot−13−7π40−13(π2−cot−13)|
∴|B−A|=|3π10−7π40−π6+3cot−13+13cot−13|
∴|B−A|=|−π24+103cot−13|
∴|B−A|=−π24+103cot−13 (∵cot−13>π24)
∴a+b+c+d=−1+24+10+3=36