wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=11cot1(11)+12cot1(12)+13cot1(13) and B=1cot11+2cot12+3cot13 then |BA| is equal to aπb+cdcot13 where a,b,c,dN and are in their lowest form then a+b+c+d equal to

Open in App
Solution

Given, A=11cot1(11)+12cot1(12)+13cot1(13) and B=1cot11+2cot12+3cot13

We know that cot11x=tan1x x>0

A=tan11+12tan12+13tan13

Also, tan11=cot11=π4

|BA|=|cot11+2cot12+3cot13(tan11+12tan12+13tan13)|

|BA|=|2cot12+3cot1312tan1213tan13|

Consider tan12=x

tanx=2

sinx=21sin2x

5sin2x=4

sinx=25x=7π20

Also, tan1x+cot1x=π2

|BA|=|2(π27π20)+3cot137π4013(π2cot13)|

|BA|=|3π107π40π6+3cot13+13cot13|

|BA|=|π24+103cot13|

|BA|=π24+103cot13 (cot13>π24)

a+b+c+d=1+24+10+3=36


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon