If A=1π⎡⎢ ⎢⎣sin−1(πx)tan−1(xπ)sin−1(xπ)cot−1(πx)⎤⎥ ⎥⎦,B=⎡⎢ ⎢⎣−cos−1(πx)tan−1(xπ)sin−1(xπ)tan−1(πx)⎤⎥ ⎥⎦ then A - B is equal to
Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x. tan−1x+tan−1y=tan−1x+y1−xy, xy<1 π+tan−1x+y1−xy, xy>1. Evaluate the following : (a) sin[π3−sin−1(−12)] (b) sin[π2−sin−1(−√32)]
If sin−1x+sin−1y=π2,then cos−1x+cos−1y is equal to