If A=π7,B=2π7 and C=4π7, then in △ABC the value of a2+b2+c2R2 is equals to
Open in App
Solution
Using sine rule, a=2RsinA,b=2RsinB,c=2RsinC ⇒a2+b2+c2=2R2(1−cos2A+1−cos2B+1−cos2C)=2R2[3−cos2π7−cos4π7−cos8π7]
Now, using 7th roots of unity,we have 1+2(cos2π7+cos4π7+cos6π7)=0 ⇒a2+b2+c2=2R2[3−(−12)]=7R2[∵8π7=2π−6π7]∴a2+b2+c2R2=7