f(θ)=5cosθ+3cos(θ+π3)+5
=5cosθ+3cosθ2−3√32sinθ+5
f(θ)=13cosθ−3√3sinθ2+5
as we know, ∴ range of asinx±bcosx is [−√a2+b2,√a2+b2]
∴ So, range of f(θ)ϵ[−√132+(3√3)22+5,√(13)2+(3√3)22+5]
ϵ[−142+5,142+5]
ϵ[−2,12]=[a,b]
a=−2,b=12